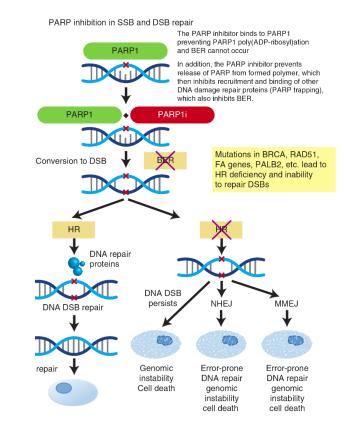


Annette Staebler, Isabell Götting, Franziska Otto, Falko Fend and Irina Bonzheim 27.09.2023

© UNIVERSITÄTSKLINIKUM TÜBINGEN.

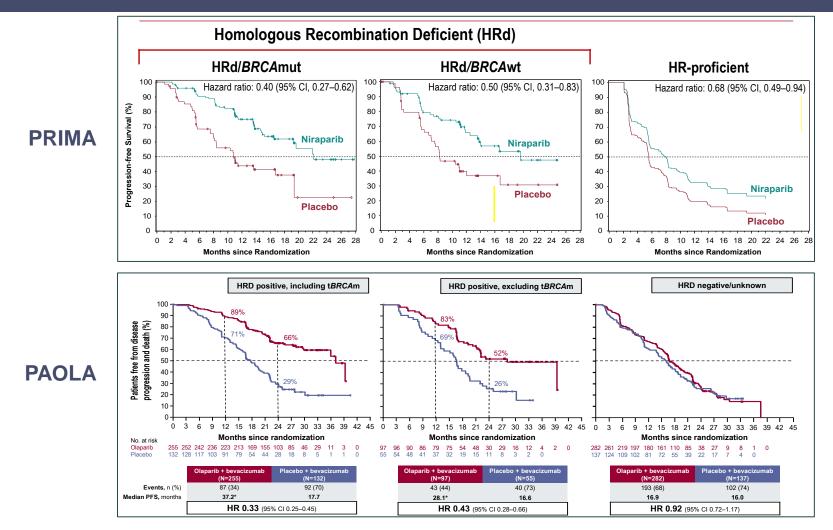
Thermo Fisher Scientific and its affiliates are not endorsing, recommending or promoting any use or application of Thermo Fisher Scientific products by third parties during this seminar. Information and materials presented or provided by third parties as-is and without warranty of any kind, including regarding intellectual property rights and reported results. Parties presenting images, text and material represent they have the right to do so. Speaker was provided honorarium by Thermo Fisher Scientific for providing this presentation.



Background: Homologous recombination deficiency (HRD) as a therapeutic target

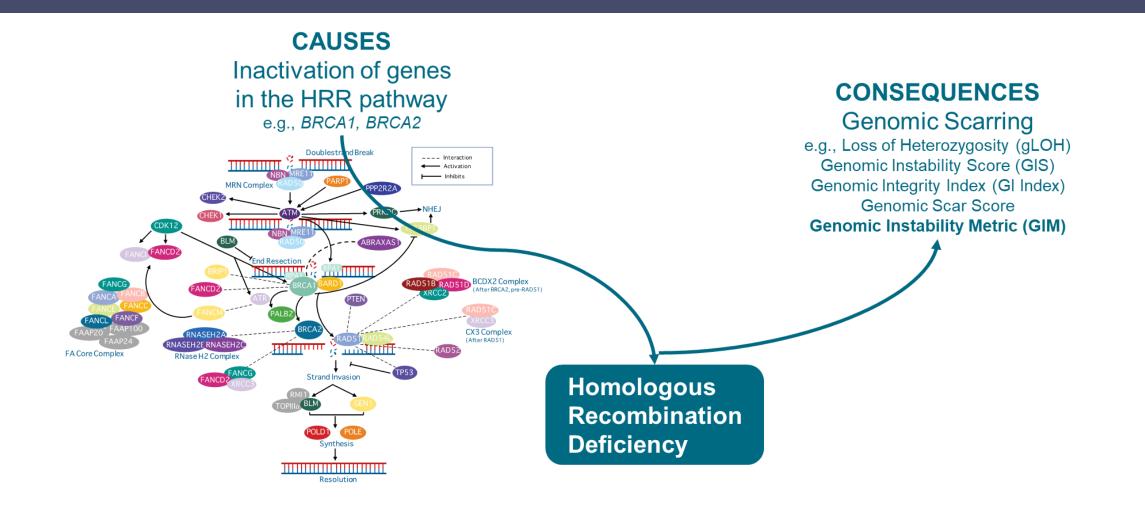
BRCAmut tumors respond better to PARPi

HRD leads to inability to repair double strand breaks



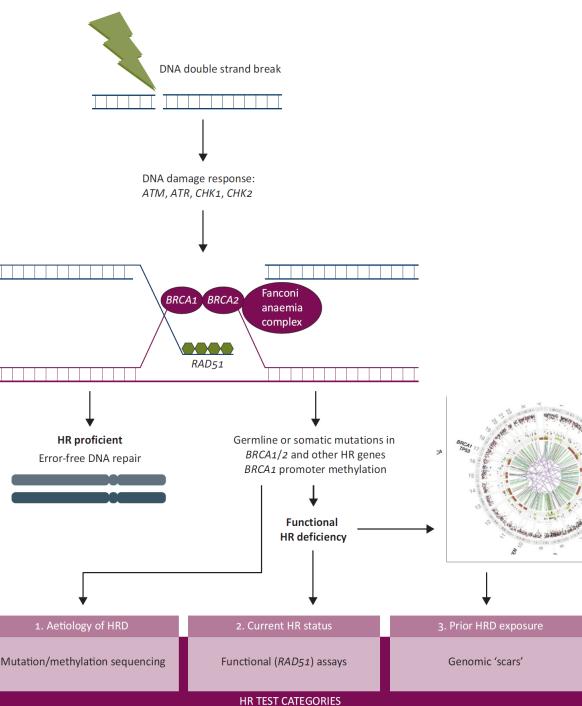
Ledermann, J. et al. 2014 Jul;15(8):852-61

3


BRCAmut and HRD as predictive markers for treatment with PARPi

4 Gonzalez-Martin et al. N Engl J Med. 2019 Dec 19;381(25):2391-2402.; Ray-Coquard et al. N Engl J Med. 2019 Dec 19;381(25):2416-2428.

How to measure HRD

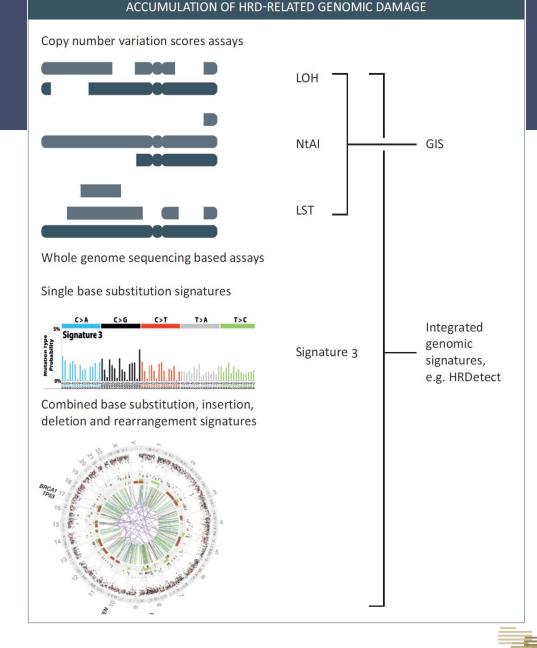

Common testing methods

ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer.

Recommendations:

- All patients with high-grade ovarian cancer should be tested for germline and/or somatic BRCA1/2-mut at diagnosis [I, A].
- Testing for HRD is recommended in advanced high-grade cancers [I, A].

1. AetiologyMiller, R. E. et al. 2020, Annals of Oncology 31:1606-1622González-Martín A. et al. 2023, Annals of Oncology 10:S0923-7534(23)00797-4.Mutation/methyle



Common testing methods

ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer.

Recommendations:

- All patients with high-grade ovarian cancer should be tested for germline and/or somatic BRCA1/2-mut at diagnosis [I, A].
- Testing for HRD is recommended in advanced high-grade cancers [I, A].

Miller, R. E. et al. 2020, Annals of Oncology 31:1606-1622 González-Martín A. et al. 2023, Annals of Oncology 10:S0923-7534(23)00797-4.

Technologies for HRD testing in clinical research

- Array based
- Targeted NGS based
- WGS based

Algorithms:

- Combination of LOH, LST, TAI
- Only LOH
- Proprietary algorithms
- Unbalanced copy number alterations

Research Study

Analytical validation of Genomic Instability Metric (GIM) in a series of tumor samples with known market reference (GIS)

Samples from Tuebingen:

55 cases of tubo-ovarian high-grade serous carcinoma from Gynecologic Oncology Center at Tuebingen University

DNA isolated from same specimens as were used for market reference, min 90 ng DNA. Analytical validation of Genomic Instability Metric (GIM) against

BRCA1/2 – status

Non-BRCA mutational status (HRR Genes)

Market Reference (GIS)

Limitation: in 6 cases only one score was available (quality of material or sample withdrawal)

OCA Plus - HRD assessment

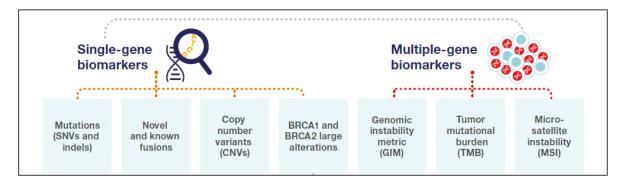
Oncomine Comprehensive Assay Plus

500+ genes comprehensive genomic profiling:

- mutations (hotspot regions and full-coding sequences)
- CNV gains or loss
- fusions
- BRCA1/2 and 46 HRR genes

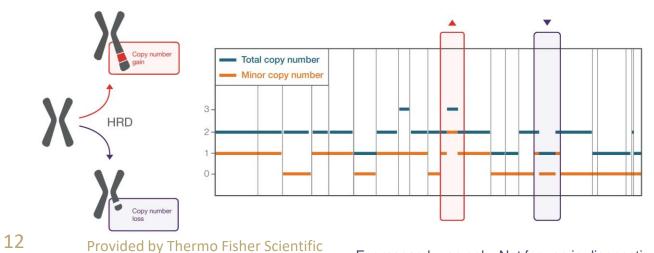
Complex biomarker assessment:

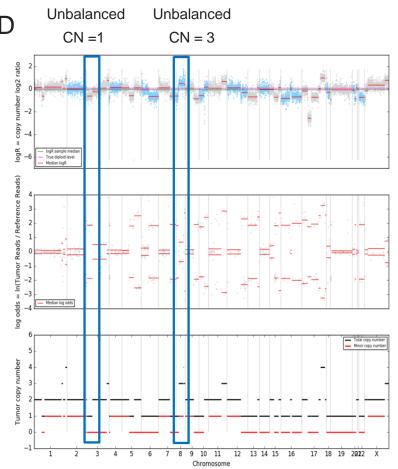
- TMB (>1 mb exonic footprint)
- MSI
- LOH
- GIM


NGS performed on the

Ion GeneStudio S5 prime

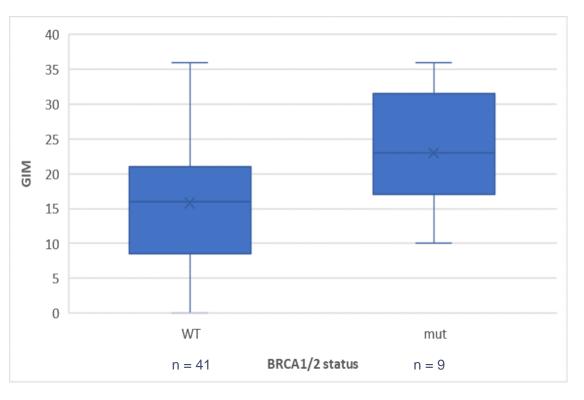
on 550 chips



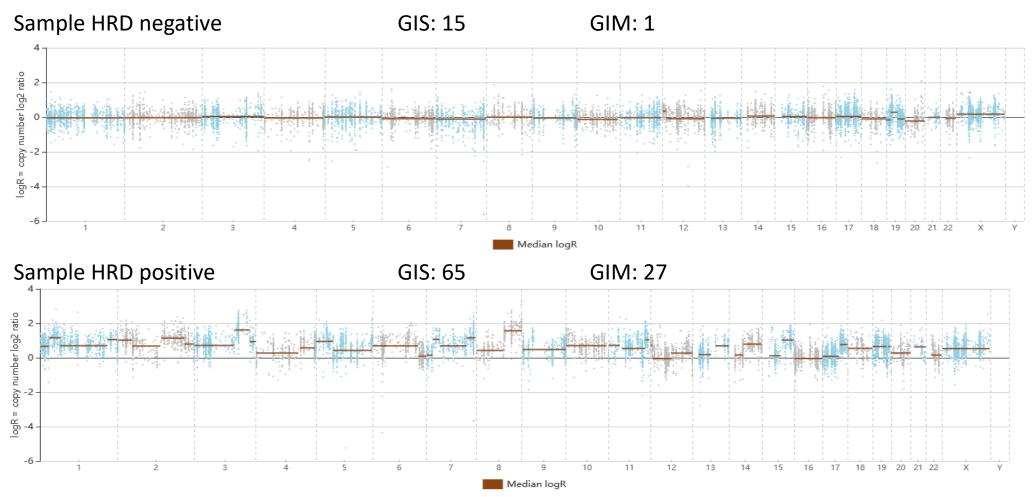

Genomic Instability Metric (GIM)

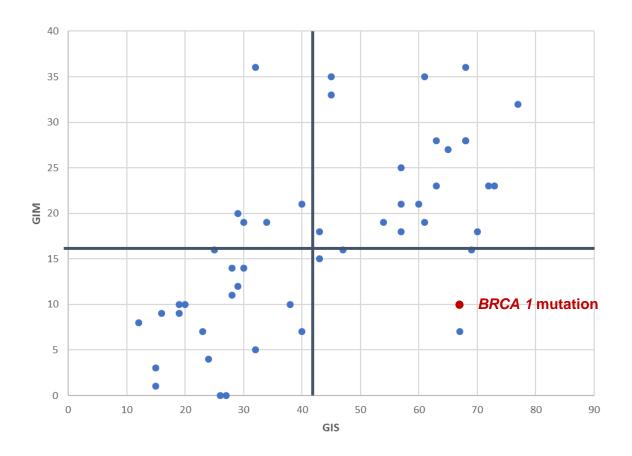
New approach to quantifying genomic scars/instability associated with HRD

- Genome segmentation to determine copy number changes
- Includes different types of unbalanced copy number events
- Metric ranges from 0-100. The higher the value, the more genomic instability
- GIM above threshold for ovarian cancer (≥ 16) will result in a sample being called GI-High. Threshold is set in software.



For research use only. Not for use in diagnostic procedures


Analytical validation of Genomic Instability Metric (GIM) in a series of tumor samples with known BRCA status


Gene	Variant (gene level)	Variant (protein level)	Interpretation	GIM score
BRCA1	c.4117G>T	p.E1373*	Pathogenic	28
BRCA2	Exon 25 del	-	Pathogenic	23
BRCA1	c.4675+3_4675+4 del	intronic	Likely Pathogenic	36
BRCA2	c.8755-1G>A	intronic	Pathogenic	18
BRCA1	c.181T>G	p.C61G	Pathogenic	16
BRCA2	Whole gene deletion	-	Pathogenic	35
BRCA1	c.3481_3491del	p.E1161fs*3	Pathogenic	QC fail
BRCA1	c.2477_2478del	p.T826Rfs*4	Pathogenic	10
BRCA1	c.2338C>T	p.Q780*	Pathogenic	23

Molecular characteristics of samples with and without HRD

Analytical validation of Genomic Instability Metric (GIM) in a series of tumor samples with known reference standard (GIS)

• BRCA1 p.T826Rfs*4, c.2477_2478del

Total (N=49)	GIM low (<16)	GIM high (<u>></u> 16)	
GIS low (<42)	18	6	
GIS high (<u>></u> 42)	3	22	
Concordance	82%		

Total (N=54)	OCA Plus HRD-	OCA Plus HRD+	
Ref. HRD -	18	6	
Ref. HRD+	2	28	
Concordance	85%		

OCA Plus HRD calling criteria: Any sample with BRCA mutation or GIM >= 16 is HRD+

Reference standard HRD calling criteria: Any sample with BRCA mutation or GIS >= 42 is HRD+

Clinical research characteristics of discrepant samples with HRD +

BRCA1/2 status	GIS	GIM	PARPi	response	
WT	32	36	N/A	N/A	
WT	40	21	Yes	PR	
WT	29	20	No	CR	
WT	30	19	No	PR	GIS low GIM high
WT	34	19	Yes	PR	
WT	25	16	Yes	PR	
WT	43	15	No	PR	borderline
Mut.	67	10	N/A	N/A	CIC bigb CIM low
WT	67	7	No	CR	GIS high GIM low

Retrospective analysis of response data Therapeutic decision based on GIS and other factors

- 1. OCA Plus may introduce decentralized HRD Testing in any lab using Thermo Fisher NGS
- 2. Harmonization studies ongoing to ensure comparability of in-house assays assessing HRD status.
- 3. What about other cancer types? Will the instability cut-offs be different?
- 4. What are the sources of discrepancy? Questions for prospective studies
 > Tissue quality: preanalytic conditions: adequate fixation and DNA quality
 > Tissue amount, overall cellularity and relative tumor cell content (HRD+ are frequently immune hot)
 > Differences in spectrum of mutations?
 > Previous neoadjuvant treatment?

Study conclusions

- 1. OCA Plus may reliably detect HRD status in the high and low range.
- 2. GIS and GIM are continous variables, borderline cases may need additional workup.
- 3. Discrepant cases with at least one test result HRD+ are most likely HRD+ as defined by response to PARPi.

Thank you!

Division of Molecular Pathology:

Irina Bonzheim Isabell Götting Franziska Otto Franziska Mihalik Falko Fend

Division of Gynecologic Patholoy:

Annette Staebler Robert Rottscholl Tanja Kopp

Thermo Fisher:

Ute Kusch Philipp Jermann Jose Luis Costa

University Womens' Hospital Tübingen:

Stefan Kommoss Marcel Grube Sara Brucker

27.09.2023

© UNIVERSITÄTSKLINIKUM TÜBINGEN.