NGS molecular profile of paediatric brain tumours research samples: results from 92 consecutive cases treated at Centro Hospitalar Universitário de São João

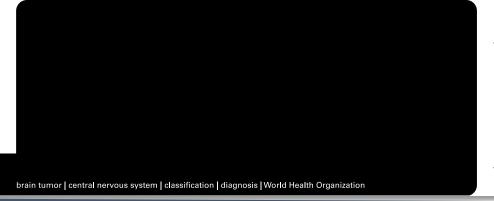
<u>Jorge Lima</u>^{1,2,3}, Jorge Pinheiro⁴, Susana Nunes⁴, Ana Paula Fernandes⁴, Paula Soares^{1,2,3}, José

Carlos Machado^{1,2,3}, Josué Pereira^{3,4}, Maria João Gil-da-Costa^{3,4}

¹Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ²Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal ³Medical Faculty of the University of Porto, 4200-319 Porto, Portugal ⁴Centro Hospitalar Universitário de São João

Paediatric Cancer and Paediatric CNS tumours

- Paediatric cancer is the leading cause of death, beside accidents, in children aged 1-14y;
- Whilst global survival rates have improved significantly, they continue dismal for specific tumour types and for relapses/refractory disease;
- Moreover, survival rates are attained at the cost of high toxicity due to multimodal therapeutics;
- Paediatric CNS tumours represent ~25% of all paediatic tumours and are a heterogenous and challenging group of tumours;
- Have had tremendous advances in their molecular biology through several large-scale, pan-cancer studies. However, the effective utilization of molecular biomarkers in paediatric oncology clinical practice is still lagging behind what is already routinely performed in many adult cancer patients.


The 2021 WHO Classification of CNS tumours

The 2021 WHO Classification of Tumors of the Central Nervous System: a summary

David N. Louis, Arie Perry, Pieter Wesseling, Daniel J. Brat, Ian A. Cree, Dominique Figarella-Branger, Cynthia Hawkins, H. K. Ng, Stefan M. Pfister, Guido Reifenberger, Riccardo Soffietti, Andreas von Deimling, and David W. Ellison

Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA (D.N.L.); Department of Pathology, University of California San Francisco, San Francisco, California, USA (A.P.); Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands (P.W.); Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (P.W.); Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA (D.J.B.); International Agency for Research on Cancer, World Health Organization, Lyon, France (I.A.C.); Service d'Anatomie Pathologique et de Neuropathologie, APHM, CNRS, Institut de Neurophysiopathologie, Hôpital de la Timone, Aix-Marseille University, Marseille, France (D.F.B.); Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada (C.H.); Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China (H.K.N.); Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Division of Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), and Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany (S.M.P.); Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, and German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Düsseldorf, Germany (G.R.); Department of Neurology and Neuro-Oncology, University of Turin Medical School, Turin, Italy (R.S.); Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany (A.v.D.); Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany (A.v.D.); Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA (D.W.E.)

Corresponding Author: David N. Louis, MD, James Homer Wright Pathology Laboratories, Massachusetts General Hospital, 55 Fruit Street, Warren 225, Boston, MA 02114, USA (dlouis@mgh.harvard.edu).

The 2021 WHO Classification of CNS tumours

TumorType	Genes/Molecular Profiles Characteristically Altered®
Oligodendroglioma, IDH-mutant, and 1p/19q-codeleted	IDH1, IDH2, 1p/19q, TERT promoter, CIC, FUBP1, NOTCI
Diffuse astrocytoma, MYB- or MYBL1-altered	MYB, MYBL1
Polymorphous low-grade neuroepithelial tumor of the young	BRAF, FGFR family
Diffuse midline glioma, H3 K27-altered	H3 K27, TP53, ACVR1, PDGFRA, EGFR, EZHIP
Diffuse pediatric-type high-grade glioma, H3-wildtype, and IDH-wildtype	IDH-wildtype, H3-wildtype, PDGFRA, MYCN, EGFR (methylome)
Pilocytic astrocytoma	KIAA1549-BRAF, BRAF, NF1
Pleomorphic xanthoastrocytoma	BRAF, CDKN2A/B
Chordoid glioma	PRKCA
Ganglion cell tumors	BRAF
Diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear clusters	Chromosome 14, (methylome)
Rosette-forming glioneuronal tumor	FGFR1, PIK3CA, NF1
Diffuse leptomeningeal glioneuronal tumor	KIAA1549-BRAF fusion, 1p (methylome)
Dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease)	PTEN
Supratentorial ependymomas	ZFTA, RELA, YAP1, MAML2
Spinal ependymomas	NF2, MYCN
Medu ll oblastoma, SHH-activated	TP53, PTCH1, SUFU, SMO, MYCN, GLI2 (methylome)
Atypical teratoid/rhabdoid tumor	SMARCB1, SMARCA4
CNS neuroblastoma, FOXR2-activated	FOXR2
Desmoplastic myxoid tumor of the pineal region, SMARCB1-mutant	SMARCB1
Solitary fibrous tumor	NAB2-STAT6

WHO Classification of Pediatric tumours

REVIEW

A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era

Stefan M. Pfister^{1,2,3}, Miguel Reyes-Múgica^{4,5}, John K.C. Chan⁶, Henrik Hasle⁷, Alexander J. Lazar⁸, Sabrina Rossi⁹. Andrea Ferrari¹⁰. Jason A. Jarzembowski¹¹. Kathy Pritchard-Jones¹². D. Ashley Hill¹³. Thomas S. Jacques^{14,15}, Pieter Wesseling^{16,17}, Dolores H. López Terrada¹⁸, Andreas von Deimling^{19,20}, Christian P. Kratz²¹, Ian A. Cree²², and Rita Alaggio⁹

ABSTRACT Pediatric tumors are uncommon, yet are the leading cause of cancer-related death in childhood. Tumor types, molecular characteristics, and pathogenesis are unique, often originating from a single genetic driver event. The specific diagnostic challenges of childhood tumors led to the development of the first World Health Organization (WHO) Classification of Pediatric Tumors. The classification is rooted in a multilayered approach, incorporating morphology, IHC, and molecular characteristics. The volume is organized according to organ sites and provides a single, state-of-the-art compendium of pediatric tumor types. A special emphasis was placed on "blastomas," which variably recapitulate the morphologic maturation of organs from which they originate.

Significance: In this review, we briefly summarize the main features and updates of each chapter of the inaugural WHO Classification of Pediatric Tumors, including its rapid transition from a mostly microscopic into a molecularly driven classification systematically taking recent discoveries in pediatric tumor genomics into account.

AACER American Association for Cancer Research

FEBRUARY 2022 CANCER DISCOVERY | 331

Classification of Pediatric CNS tumours

Gliomas, glioneuronal, and neuronal tumors

Pediatric-type diffuse low-grade gliomas

Diffuse astrocytoma, MYB or MYBL1-altered new

Angiocentric glioma

Polymorphous low-grade neuroepithelial tumor of the young new

Diffuse low-grade glioma, MAPK pathway-altered new

Pediatric-type diffuse high-grade gliomas defined by H3 status

Diffuse midline glioma, H3 K27-altered

Diffuse hemispheric glioma, H3 G34-mutant new

Diffuse pediatric-type high-grade glioma, H3-wild-type and IDH-wild-type new

Infant-type hemispheric glioma new

Circumscribed astrocytic gliomas

Pilocytic astrocytoma

High-grade astrocytoma with piloid features new

Pleomorphic xanthoastrocytoma

Subependymal giant cell astrocytoma

Astroblastoma, MN1-altered

Glioneuronal and neuronal tumors

Ganglioglioma

Desmoplastic infantile ganglioglioma/Desmoplastic infantile astrocytoma

Dysembryoplastic neuroepithelial tumor

Diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear

clusters (DGONC)^a new

Diffuse leptomeningeal glioneuronal tumor

Multinodular and vacuolating neuronal tumor new

Ependymal tumors

Supratentorial ependymoma

Supratentorial ependymoma, ZFTA fusion-positive

Supratentorial ependymoma, YAP1 fusion-positive new

Posterior fossa ependymoma

Posterior fossa ependymoma, Group PFA new

Posterior fossa ependymoma, Group PFB new

Spinal ependymoma, MYCN-amplified new

Myxopapillary ependymoma

Choroid plexus tumors

Choroid plexus papilloma

Atypical choroid plexus papilloma

Choroid plexus carcinoma

CNS embryonal tumors

Medulloblastomas, molecularly defined

Medulloblastoma, WNT-activated

Medulloblastoma, SHH-activated & TP53-wild-type

Medulloblastoma, SHH-activated & TP53-mutant

Medulloblastoma, non-WNT/non-SHH

Medulloblastoma, histologically defined

Medulloblastoma, histologically defined

Other CNS embryonal tumors

Atypical teratoid/rhabdoid tumor

Cribriform neuroepithelial tumora new

Embryonal tumor with multilayered rosettes

CNS neuroblastoma, FOXR2-activated new

CNS tumor with BCOR internal tandem duplication new

CNS embryonal tumor NEC/NOS

Pineal region tumors

Pineoblastoma

Melanocytic tumors

Meningeal melanocytosis and melanomatosis

Tumors of the sellar region

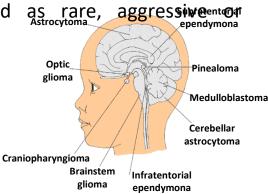
Pituitary endocrine tumors

Pituitary adenoma/PitNET

Pituitary blastoma new

Craniopharyngiomas

Adamantinomatous craniopharyngioma

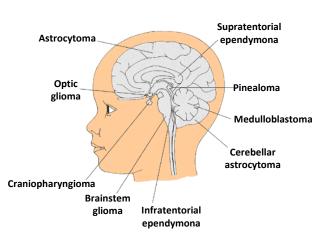

Aims of the Project

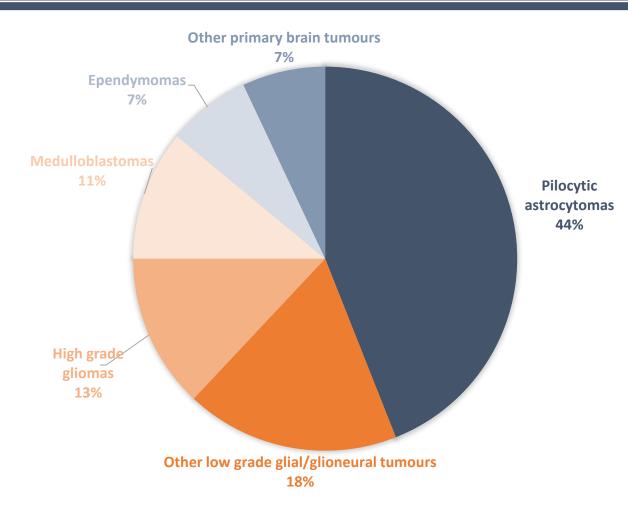
Perform a retrospective **comprehensive genetic screening** in all diagnosed **paediatric CNS tumours**, treated at Centro Hospitalar Universitário de São João (Jan 2018-present).

The fundamental goal of this protocol is to evaluate the future value of **a tool to assist in the diagnosis and prognosis**, while supporting the clinician in identifying the best possible therapy.

Inclusion criteria are:

- Age 18 years or below;
- Newly diagnosed brain tumour, with histologic confirmation, irrespective of location;
- Previously diagnosed brain tumour, whenever it presented irresectable disease;
- Availability of tumour material;
- Signed informed consent.





Paediatric CNS tumours study cohort

Paediatric CNS tumours (n=92)

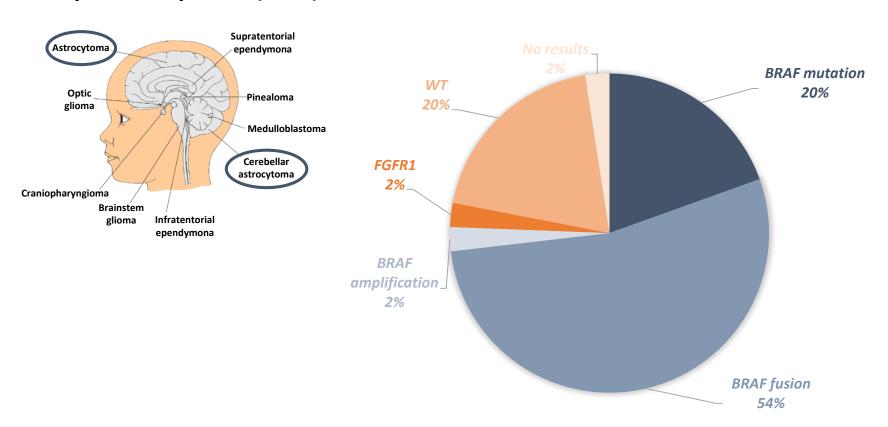
In this cohort, the majority of tumours are pilocytic astrocytomas (44%)

Methods: NGS With Oncomine Childhood Cancer Research Assay

Oncomine Childhood Cancer Research Assay Panel - 203 genes

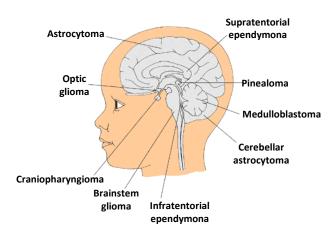
Comprehensive mutation coverage (86)				CNV (28) Full exon cove			xon cover	age (44) Fusion and expression (97			ession (97)		Gene expression		
ABL1	CSF1R	GATA2	MAP2K2	RAF1	ALK	IGF1R	APC	GATA3	RUNX1	ABL1	FGFR2	MEF2B	NUP214	SSBP2	BCL2
ABL2	CSF3R	GNAQ	MET	RET	BRAF	JAK1	ARID1A	GNA13	SMARCA4	ABL2	FGFR2	MET	NUP98	STAG2	BCL6
ALK	CTNNB1	H3F3A	MPL	RHOA	CCND1	JAK2	ARID1B	ID3	SMARCB1	AFF3	FGFR3	MKL1	NUTM1	STAT6	FGFR1
ACVR1	DAXX	HDAC9	MSH6	SETBP1	CDK4	JAK3	ATRX	IKZF1	SOCS2	ALK	FLT3	MLLT10	NUTM2B	TAL1	FGFR4
AKT1	DNMT3A	HIST1H3B	MTOR	SETD2	CDK6	KIT	CDKN2A	KDM6A	SUFU	BCL11B	FOSB	MN1	PAX3	TCF3	IGF1R
ASXL1	EGFR	HRAS	NCOR2	SH2B3	EGFR	KRAS	CDKN2B	KMT2D	SUZ12	BCOR	FUS	MYB	PAX5	TFE3	MET
ASXL2	EP300	IDH1	NOTCH1	SH2D1A	ERBB2	MDM2	CEBPA	MYOD1	TCF3	BCR	GLI1	MYBL1	PAX7	TP63	MYCN
BRAF	ERBB2	IDH2	NPM1	SMO	ERBB3	MDM4	CHD7	NF1	TET2	BRAF	GLIS2	MYH11	PDGFB	TSLP	MYC
CALR	ERBB3	IL7R	NRAS	STAT3	FGFR1	MET	CRLF1	NF2	TP53	CAMTA1	HMGA2	MYH9	PDGFRA	TSPAN4	TOP2A
CBL	ERBB4	JAK1	NT5C2	STAT5B	FGFR2	MYC	DDX3X	PHF6	TSC1	CCND1	JAK2	NCOA2	PDGFRB	UBTF	
CCND1	ESR1	JAK2	PAX5	TERT	FGFR3	MYCN	DICER1	PRPS1	TSC2	CIC	KAT6A	NCOR1	PLAG1	USP6	
CCND3	EZH2	JAK3	PDGFRA	TPMT	FGFR4	PDGFRA	EBF1	PSMB5	WHSC1	CREBBP	KMT2A	NOTCH1	RAF1	WHSC1	
CCR5	FASLG	KDM4C	PDGFRB	USP7	GLI1	PIK3CA	EED	PTCH1	WT1	CRLF2	KMT2B	NOTCH2	RANBP17	YAP1	
CDK4	FBXW7	KDR	PIK3CA	ZMYM3	GLI2		FAS	PTEN	XIAP	CSF1R	KMT2C	NOTCH4	RECK	ZMYND11	
CIC	FGFR2	KIT	PIK3R1				GATA1	RB1		DUSP22	KMT2D	NPM1	RELA	ZNF384	
CREBBP	FGFR3	KRAS	PPM1D							EGFR	LMO2	NR4A3	RET		
CRLF2	FLT3	MAP2K1	PTPN11							ETV6	MAML2	NTRK1	ROS1		
				_						EWSR1	MAN2B1	NTRK2	RUNX1		
										FGFR1	MECOM	NTRK3	SS18		

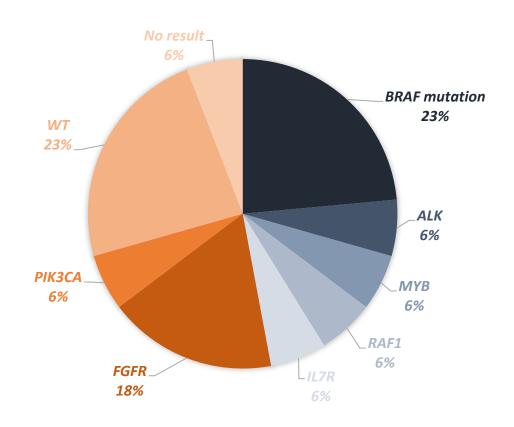
Research Use Only



Pilocytic Astrocytomas (n=41)

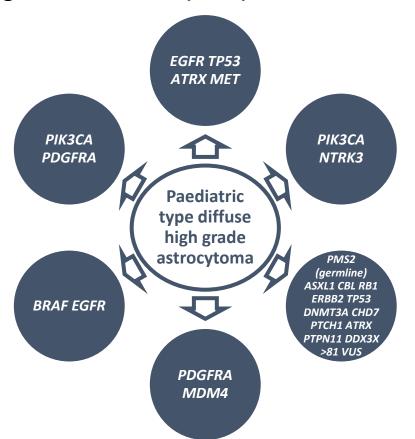
The majority of variants (54%) were **BRAF** fusions

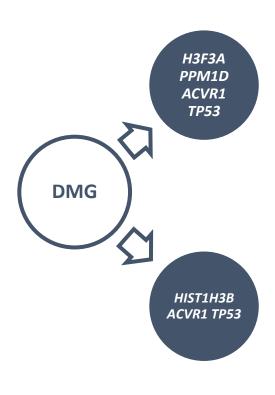




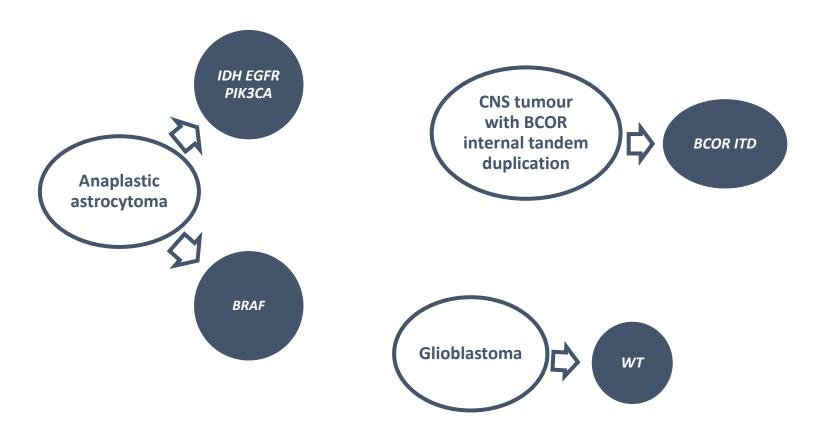
Other Low Grade Glial/ Glioneural Tumours (n=17)

The majority of variants (23%) were **BRAF** mutations

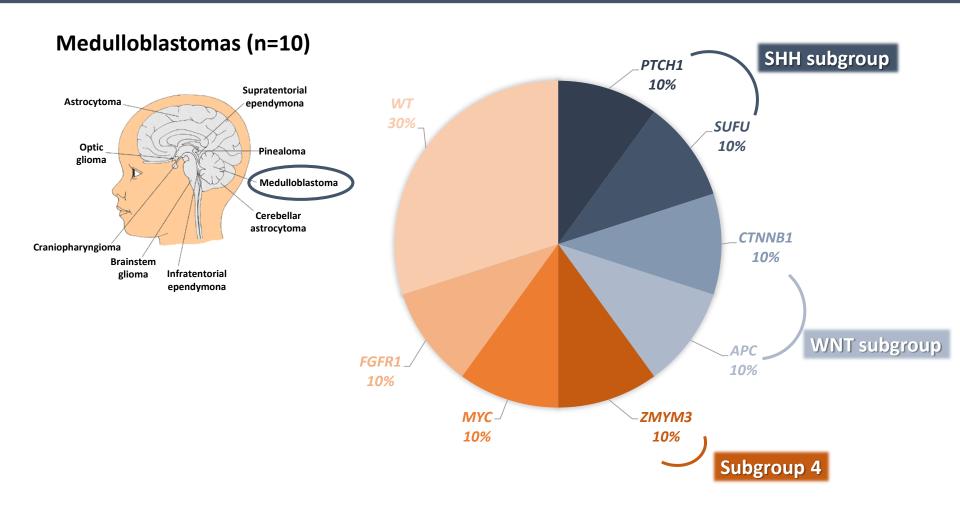




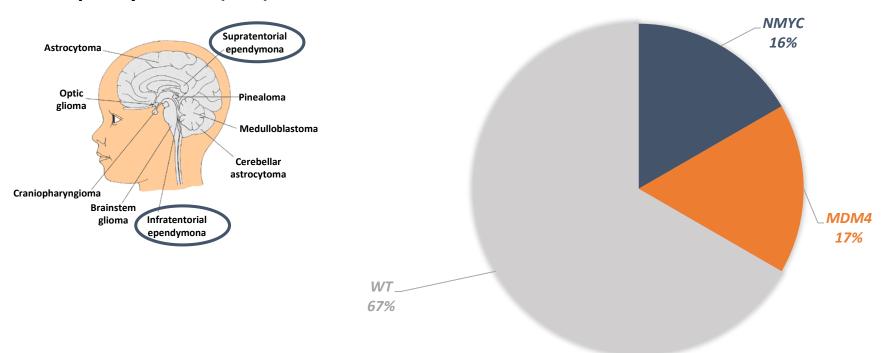
High Grade Gliomas (n=12)



High Grade Gliomas (n=12)

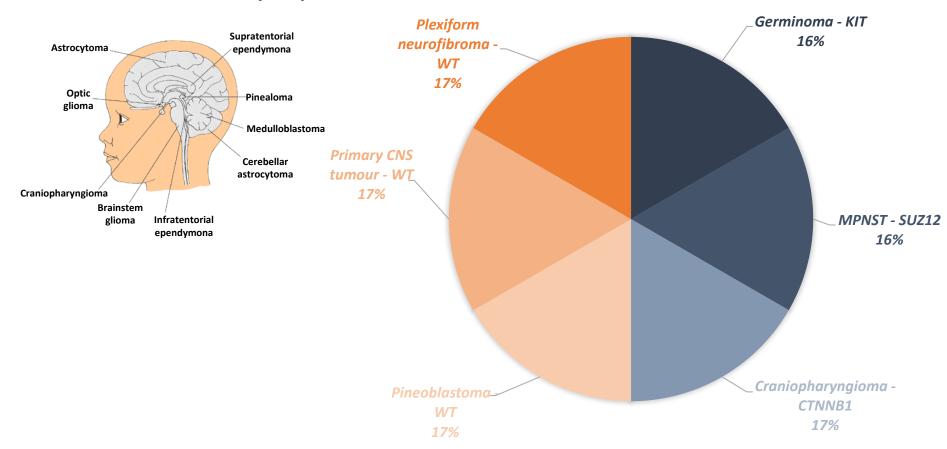


For medulloblastoma, 3 subgroups (SHH, WNT and ZMYM3) were identified



Ependymomas (n=6)

In 33% of ependymoma cases a relevant genetic variant was identified

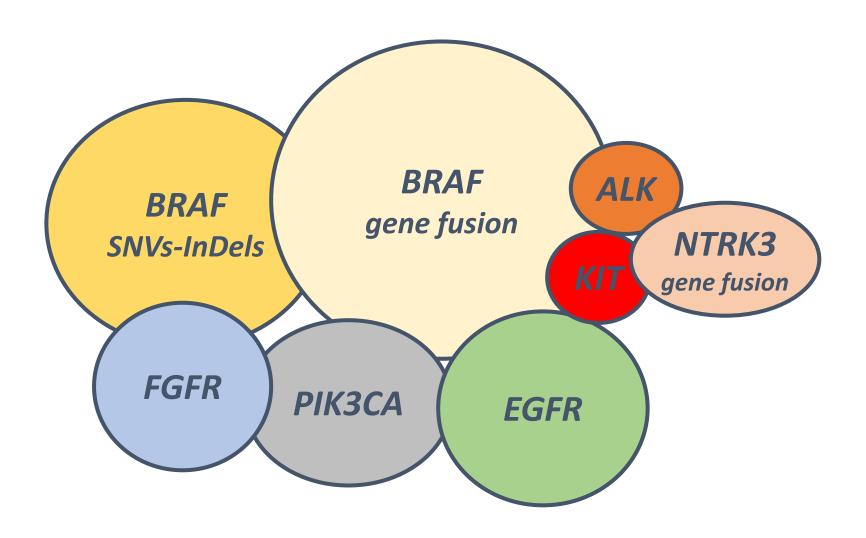


Other Brain Tumours (n=6)

In other brain tumors the are **heterogeneity** in terms of **genomic findings**

Notable Cases

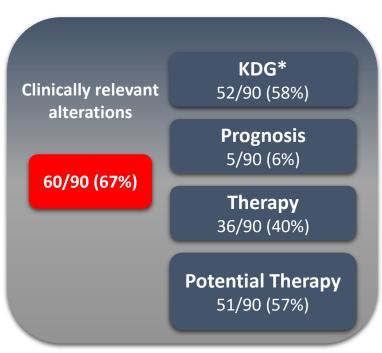
Diagnosis	Alteration #1	Alteration #2	Alteration #3
PA	KIAA1549-BRAF	PTPRZ1-MET	EGFRVIII
PA	KIAA1549-BRAF	PAX8-PPARg	-
PA	KIAA1549-BRAF	CBL c.1096-1G>T	EGFRVIII
PA	KIAA1549-BRAF	ZCCHC8-WHSC1	C2orf44-FER
Ependymoma	MYCN	-	-
PTDHGA	PMS2 (homoz)	hypern	nutant



Alterations with potential actionable value

Study Overall Performance

Total cohort


92 cases

Meeting DNA and RNA QC metrics

90/92 (97%)

Biologically relevant alterations

66/90 (73%)

*KDG: key diagnostic gene (WHO 2021)

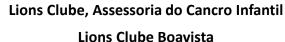
Research cases with BRAF-V600 Mutant tumours

Pt	Age Dx	Age Tr	Sex	Topog.	Histology	option	Tr time	Response	Тох
1	12y	12y	F	IV vent / invasion BST	PA	first line	47 m	improved	-
2	8m	4 y	F	Sup. selar	PA	rescue	42 m	mixed	Rash g1
3	4y	5y	F	Hemisph.	Met. GBM	rescue	2 m	progr. died	-
4	2у	12y	F	Sup. selar	PA	rescue	41 m	improved	Rash g1
5	4y	4y	M	Sup. selar	GG	first line	43 m	improved	Rash g1

Pt: Patient; Dx: Diagnosis; Tr: Treatment; Tox: Toxicity; PA: Pilocytic Astrocytoma; GBM: Glioblastoma Multiforme; GG: Glioma

Conclusions

- NGS proved to be a valuable tool in the setting of PBT, resulting from its significant
 capacity in revealing clinically meaningful molecular alterations, that can be potentially
 used for the diagnosis, prognosis and therapy selection
- Low and high grade gliomas were the tumour types that benefitted more from NGS,
 while ependymomas were the tumours less likely to harbour molecular alterations
- In terms of potential therapeutic targets, **BRAF** stands out, but **FGFR** genes might also be a potentially relevant target in LGG. In high grade gliomas, there were several potential targets (**EGFR**, **PIK3CA**, **PDGFRA**, **MET**) although there is still little data about the efficacy of therapeutic agents directed at these targets


Thank you

Thermo Fisher S C I E N T I F I C

Ensemble Vocal Pro Musica

