iontorrent

Rapid and Automated Genomic Profiling of Lung Cancer Solid Tumor and Liquid Biopsy

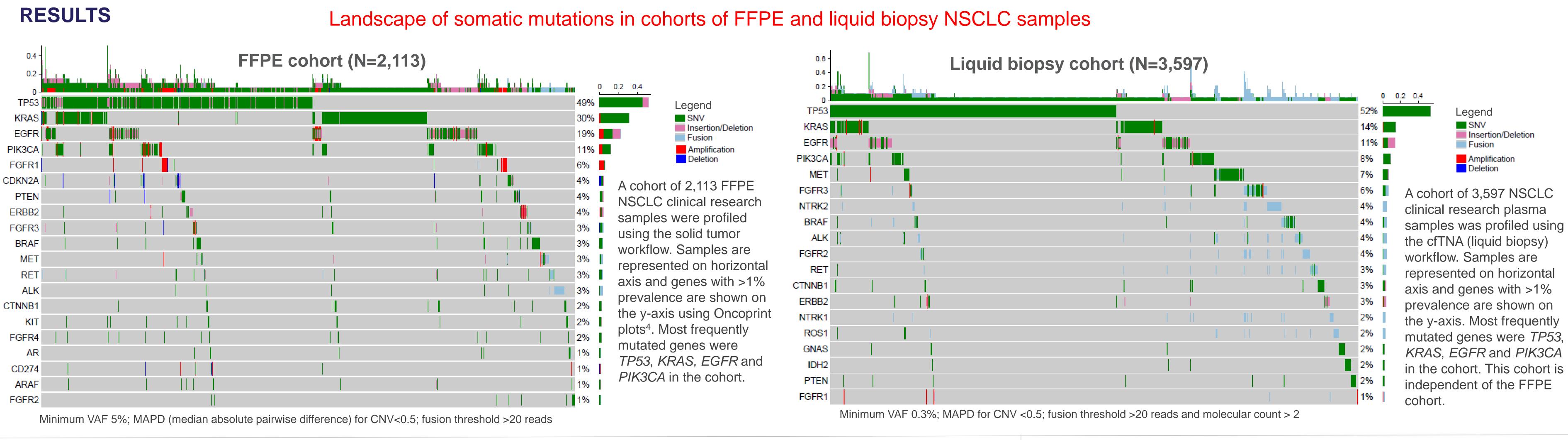
Vinay Mittal¹, Yu Wang¹, Stephen Wunsch², Aditya Mehta⁴, Cheng-Zong Bai³, April Bigley⁴, Heesun Shin³, Hsueh Ping Chao⁴, Nader Ezzedine⁴, Jian Gu⁴, Diarra Hassell⁴, Andrew Hatch², Sandra Liu³, Amir Marcovitz³, Jeff Schageman⁴, Warren Tom³, Zheng Zhang³, Seth Sadis¹. Thermo Fisher Scientific – ¹Ann Arbor, MI; ²Carlsbad, CA; ³South San Francisco, CA; ⁴Austin, TX.

INTRODUCTION

Lung cancer is the leading cause of cancer-related mortality and the second leading cancer type for incidence¹. Progress has been recently made in the treatment and management of non-small cell lung cancer (NSCLC). Molecular diagnostics plays a critical role in precision medicine of NSCLC, however, the penetrance of comprehensive next-generation sequencing (NGS) is uneven and shows widespread disparities. To address the gaps associated with complexity of NGS workflows and the long turn-around time, we developed a rapid and automated NGS system for FFPE and plasma samples to support oncology research in NSCLC.

METHODS

Simultaneous testing of multiple key biomarkers with limited tumor tissue material, complex workflows, long turnaround times, and numerous user touch points of most sequencing platforms remain a challenge for NGS based targeted assays. We developed the Oncomine[™] Precision Assay (OPA)² on the automated GenexusTM sequencing platform³. OPA delivers genomic profiling across 50 key genes relevant to NSCLC using 10 ng of DNA and RNA from FFPE and 10 - 30 ng nucleic acid from plasma. Nucleic acid extraction, purification, and quantitation were done in a single workflow on the Genexus Purification System. Library preparation, templating, and sequencing used the automated workflow on the Genexus Integrated Sequencer. Bioinformatics analysis and reporting used the Genexus System software version 6.8. To demonstrate the performance of OPA in NSCLC, we profiled >2100 NSCLC FFPE and >3500 plasma research samples from different cohorts to characterize the landscape of relevant somatic alterations in lung cancer.


Nucleic acid purification Library preparation to Report variant interpretation and quantitation on Torrent[™] Genexus Ion Torrent[™] Genexus Purification System Integrated Sequencer -Ion Torrent" Pre-Processed CY5[™] Chin[·] Specimen 12–15M FFPE tissu Plasma As fast as 2 hours turnaround time As fast as 14 hours for a single-lane run Up to 12 samples per run Up to 32 samples per run <10 min Hands-on-Time 5 min Hands-on-Time

Fully automated Genexus[™] NGS system

An automated end-to-end NGS workflow from specimen to report supported by GenexusTM system. Turn around time is less than one day. Single sequencing kit can be used for FFPE or plasma samples.

For Research Use Only. Not for use in diagnostic procedures.

Small variant mutations in NSCLC driver genes KRAS, EGFR and PIK3CA in FFPE and liquid biopsy NSCLC cohorts. Variant distribution is displayed using MAF tools lollipop plots⁵. Mutational distribution frequency was similar to prior molecular profiling studies (TCGA, cBio). Lollipop plot legend: missense, truncated, splice, in frame; vertical axis: number of mutations, horizontal axis: length of the gene transcript.

Novel (non-hotspot) variant detection in FFPE workflow **Truncating variants in tumor suppressor genes**

Novel (a.k.a non-hotspot) variant detection is enabled for all 50 genes in the OPA FFPE workflow which allows assessment of entire target regions for variant calling.

Relative distribution of truncating hotspot (blue) and novel (red) variants in tumor suppressor genes in the FFPE NSCLC cohort. Higher proportion of novel variants was detected for PTEN, CDKN2A and CHEK2.

Variant calling performance measured using control samples Non-hotspot

Туре	Sensitivity	PPV	Туре	Sensitivity	PPV	
SNVs	98.6%	100%	SNVs	95.23%	100%	
Indels	100%	100%	Indels	100%	100%	

Two replicates of Acrometrix[™] Oncology Hototspot Control⁶ (with 75 hotspots and 22 nonhotspot variants) were used to measure the analytical performance. PPV is positive predictive

Thermo Fisher Scientific • 110 Miller Ave Floor 2 • Ann Arbor, MI 48104 • thermofisher.com