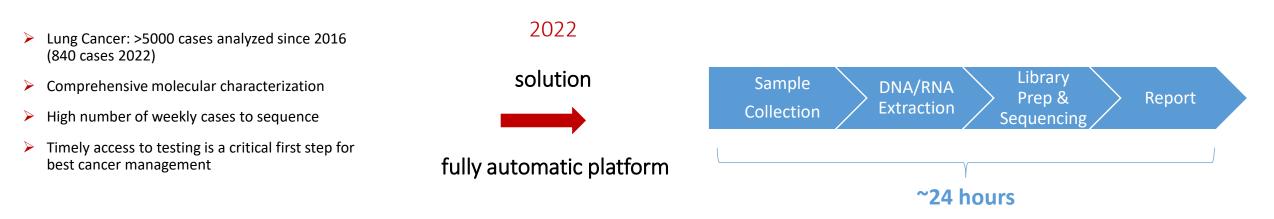
35th European Congress of Pathology 9 – 13 September 2023 Convention Centre Dublin, Ireland

Feasibility study:

comparing tissue and blood profiles at baseline for the identification of genomic alterations

Simonetta Buglioni


Pathology Unit Molecular Diagnostics Lab

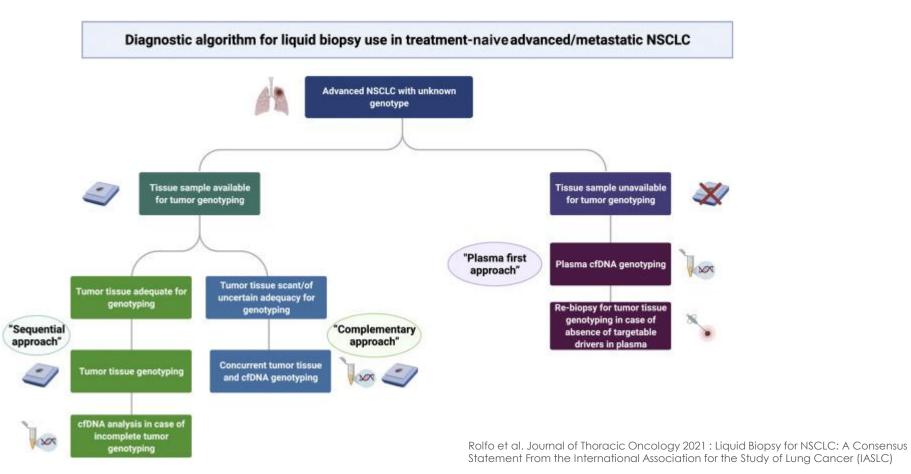
IRCCS, Regina Elena National Cancer Institute – Rome, Italy

European Society of Pathology > Thermo Fisher Scientific and its affiliates are not endorsing, recommending or promoting any use or application of Thermo Fisher Scientific products by third parties during this seminar. Information and materials presented or provided by third parties as-is and without warranty of any kind, including regarding intellectual property rights and reported results. Parties presenting images, text and material represent they have the right to do so. Speaker was provided honorarium by Thermo Fisher Scientific for providing this presentation.

IRE Molecular diagnostics: NSCLC

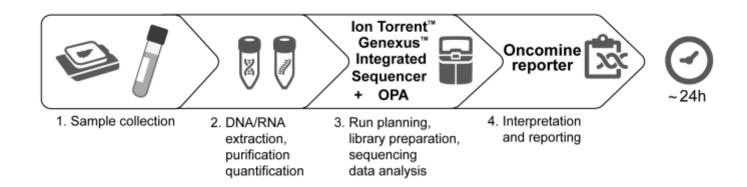
WE HAVE MADE A NUMBER OF IMPROVEMENTS

- 1) Reduction in TAT: single <u>day work flow</u>
- 2) A new 50 gene panel includes all relevant and emerging targets in precision oncology research
- 3) A higher reproducibility and efficiency
- 4) Liquid biopsy analysis


DNA hotspots		DNA hotspots CNVs				IVs	Inter-gene	etic fusions	Intra-genetic fusions		
AKT1	CHEK2	FGFR3	KIT	NTRK3	ALK	FGFR1	ALK	NTRK1	AR		
AKT2	CTNNB1	FGFR4	KRAS	PDGFRA	AR	FGFR2	BRAF	NTRK2	EGFR		
AKT3	EGFR	FLT3	MAP2K1	PIK3CA	CD274	FGFR3	ESR1	NTRK3	MET		
ALK	ERBB2	GNA11	MAP2K2	PTEN	CDKN2A	KRAS	FGFR1	NUTM1			
AR	ERBB3	GNAQ	MET	RAF1	EGFR	MET	FGFR2	RET			
ARAF	ERBB4	GNAS	MTOR	RET	ERBB2	PIK3CA	FGFR3	ROS1			
BRAF	ESR1	HRAS	NRAS	ROS1	ERBB3	PTEN	MET	RSPO2			
CDK4	FGFR1	IDH1	NTRK1	SMO			NRG1	RSPO3			
CDKN2A	FGFR2	IDH2	NTRK2	TP53							

3

Background of the feasibility study

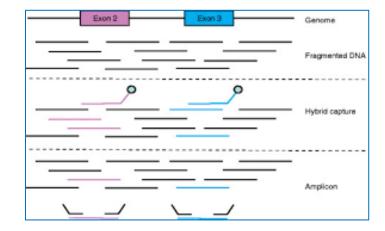

minimally invasive liquid biopsy and rapid genomic profiling are expected to be in future potential options for initial genomic screening

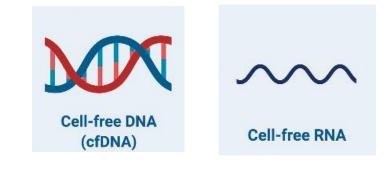
Aims and study design

Validation study by comparing tissue and blood profiles at baseline for the identification of variants

- □ To setup the preanalytical phase
- □ Selection of 20 positive cases (focusing on targetable alterations: *EGFR, ALK, ROS1, BRAF, RET, KRAS, NTRK1/2/3, MET* ex 14)
- □ Tissue and liquid biopsy samples were tested using the same NGS platform and gene panel
- To assess the concordance between genomic alterations identified through liquid biopsy and those observed in the corresponding tissue

ctDNA vs cfTNA

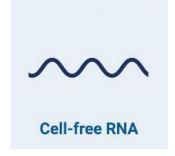

To date, only circulating tumor DNA (ctDNA), extracted from plasma samples and analyzed by NGS assays with a hybrid-capture approach, has obtained FDA approval in clinical practice


□ Only two studies (Genexus-OPA)* - NGS assays with amplicon-based approach which involves analysis from cfTNA (which include both cfDNA and cfRNA)

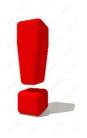
■ We need something new: validate the NGS assays with amplicon-based approach for use in clinical practice

SK Low et al. Transl Lung Cancer Res 2022

[•] Gumà J et al. Pathobiology. 2023


Liquid biopsy: Preanalytical Phase

Tumor genotyping through liquid biopsy is influenced by a large number of preanalytical variables including: sample collection, handling, processing and storage procedures


BUT if the amplicon-based approach is to be used for analysis Careful attention should be paid to preanalytics

short half-life (only few minutes) and low concentration of the cfRNA

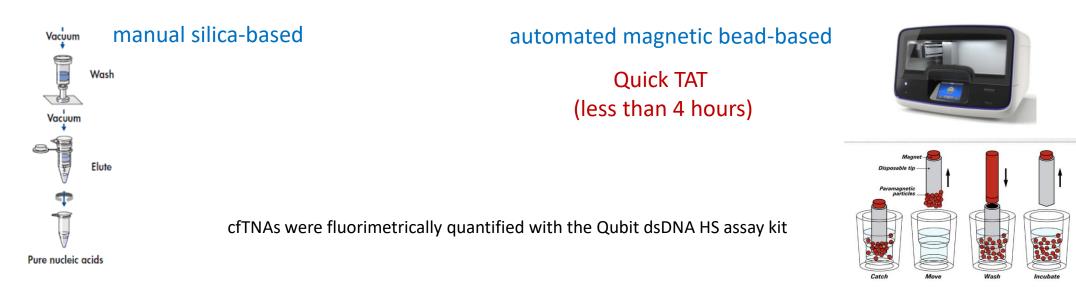
Liquid biopsy: Preanalytical Phase

Tumor genotyping through liquid biopsy is influenced by a large number of preanalytical variables including: sample collection, handling, processing and storage procedures

Organization of a well defined «liquid biopsy path»

What we did:

- One day per week dedicated to liquid biopsy analysis
- Booking (by the oncologist on a prepared and shared file)
- Two biologists dedicated to the preanalytical phase

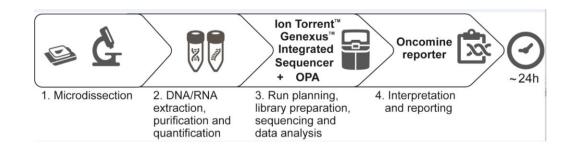

Preanalytical phase

- Collection: 14 ml of peripheral blood samples in K₂EDTA tubes and processed within 15 min
- Centrifugation: Plasma was isolated by two successive rounds of centrifugation at 4°C (2000 x g for 20 min, and 13000 x g for 10 min), and stored at -80° in single-use 2 ml aliquots
- > Extraction:

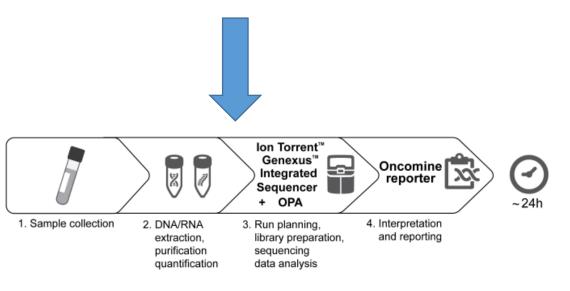
2 different methods:

1) QIAmp Circulating Nucleic Acid kit (Qiagen)

2) Genexus Cell-Free Total Nucleic Acid Purification workflow



storage: stored at -80°C until analysis

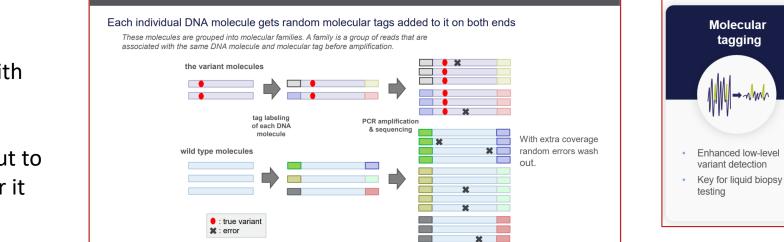

FFPE Tissue samples

A1	EGFR p.L858R	TP53 p. H179R
A2	EGFR p.L858R	-
A3	EGFR p.E746_A750del	
A4	EGFR p.E746 A750del	
A5	EGFR p.L861Q	EGFR p.G719A
A6	EGFR p.H773_V774insY	TP53 p.V216L
A7	BRAF p.V600E	
A8	ERBB2 p. Y772_A775dup	
A9	KRAS p.G12C	TP53 p.Y220C
A10	KRAS p.G12D	
A11	ALK fusion: :EML4(13)-ALK(20)	
A12	ALK fusion: TPM3(7)-ALK(20)	
A13	ROS1 fusion: CD74(6)-ROS1(34)	TP53 p.L194R
A14	NTRK3 fusion: ETV6(4)-NTRK3(14)	
A15	RET fusion: CCDC6(1)-RET(12)	TP53 pG266V
A16	RET fusion: CCDC6(1)-RET(12)	
A17	RET fusion KIF5B(15)-RET(12)	
A18	MET exon 14 skipping	MET c.2942_1G>A
A19	MET exon 14 skipping	
A20	MET amplification	

Selection of 20 positive tissue samples
 Molecular characterization with OPA-Genexus

RESULTS: extraction and sequencing

- An average of 50 ng (range 10-1200 ng, median: 40ng) of cfTNA were extracted from the plasma samples
- No statistically significant difference was observed in terms of yield (ng of extracted cfTNA) between the two extraction methods
- Almost all samples (90%) achieved the optimal input at 20 ng for Genexus-OPA sequencing
- The success rate for library construction and sequencing was 100%
- TAT: 2 days (from sampling to report)


RESULTS

Summary of NGS parameters

Parameters	Average	Range
Total reads	11.668.314	4,222,995–14,139,983
Mapped reads	11,344,432	3,322,939–13,737,486
Mean read length (bp)	97	94–101
Mean depth (×)	41,054	27,789–57,595
Median molecular coverage (×)	2,117	472–2,770
Molecular uniformity	94%	58%–98%

The Molecular Tagging Scheme

- MMC refers to the molecular • families that are associated with the same DNA molecule
- molecular tagging is carried out to • increase sensitivity and render it applicable to liquid biopsy.

Molecular

tagging

RESULTS: analysis of concordance rate

Comparison of genomic profiling between tumor tissue and liquid biopsy

85.2% (23/27) of genomic alterations detected from tumor tissue were concordantly detected from plasma cfTNA

20 cases:		
Tissue & cfTNA	n=16	
Tissue only	n=4	
cfTNA only	n=0	Detected Not detected
		Not detected

Tissue only: 1 EGFR DEL19 1 MET AMPLIFICATION 1 MET EXON 14 SKIPPING 1 ALK FUSION

□ SNV and INDEL:

VAF average: 3.5% (0.6-42)

FUSIONS:

Reads count per million: 400 (50-1000)

A1	EGFR p.L858R	TP53 p. H179R	
A2	EGFR p.L858R		
A3	EGFR p.E746_A750del		
A4	EGFR p.E746_A750del		
A5	EGFR p.L861Q	EGFR p.G719A	
A6	EGFR p.H773_V774insY	TP53 p.V216L	
A7	BRAF p.V600E		
A8	ERBB2 p. Y772_A775dup		
A9	KRAS p.G12C	TP53 p.Y220C	
A10	KRAS p.G12D		
A11	ALK fusion: EML4(13)-ALK(20)		
A12	ALK fusion: TPM3(7)-ALK(20)		
A13	ROS1 fusion: CD74(6)-ROS1(34)	TP53 p.L194R	
A14	NTRK3 fusion: ETV6(4)-NTRK3(14)		
A15	RET fusion: CCDC6(1)-RET(12)	TP53 pG266V	
A16	RET fusion: CCDC6(1)-RET(12)		
A17	RET fusion KIF5B(15)-RET(12)		
A18	MET exon 14 skipping	MET c.2942_1G>A	
A19	MET exon 14 skipping		
A20	MET amplification		

FALSE NEGATIVE RESULTS

The 4 non-detected variants in cfTNA could be associated with a low percentage of mutated fragments below the LOD of the assay used:

False negative results in LB are generally caused by:

- A low tumor burden of disease (could be the case of *EGFR* deletion)
- Low or no ctDNA shedding due to the tumor site
- Vascularization or histology of the cancer lesions (such as isolated brain metastasis) (could be the case of ALK fusion)
- nucleic acid degradation in the preanalytical phase

Not detected in cfTNA

Tissue only: *EGFR* DEL19 *MET* AMPLIFICATION *MET* EXON 14 SKIPPING *ALK* FUSION

RESULTS

MET exon 14 skipping: NGS tissue (DNA + RNA) vs liquid biopsy (cfTNA)

Results / 25_Mag_22_OPA_Enzo_LE	8_MTB ▼ / OPA DNA w3.2.0 ▼ / NI	.357_22 ▼										
NL357_22 QC 🗸 Ke	ey Findings Variants	Plugins Repor	'S									
All SNVs/Indels CNVs	Gene List Only								Variant Matrix	Summary (5.16) Filte 1 of 2,1	r Chain Applie 138 SNVs/Indel	
Locus T	Oncomine Variant Class	Gene	▼ AA Change	T	Allele Frequency	Coverag	ge 🔻 🕇	Nuc Change	T	Raw Read Depth	T	Effective Read Depth
chr7:116411902	METExon14Skipping	MET	р.?		0.227	12651		c.2942-1G>A		13214		12651
Genexus Assay Develo	opment Ion Torrent								Dashboar	d Samples	Runs	Results Assays
	· ·								Dusinoval			
Results / LUNG_31_05_22 ▼ / OPA		•							Dushbour	a bumpies	Kuns	nesares nesares
Results / LUNG_31_05_22 V / OPA			eports						Dushbour	Sumptes		
	Fusions w3.1.0 ▼ / NL357_22_RNA		eports					Variant Matrix Summa	ary (5.16) Filter Ch	-te Analizad	: Filters	Export Columns -
NL357_22_RNA QC 🗸	Fusions w3.1.0 ▼ / NL357_22_RNA		eports Read Counts	Ŧ	Туре	Ŧ	Gene Isoform	Variant Matrix Summa	ary (5.16) Filter Ch	ain Applied 007 Fusions	: Filters	

Genexus Assay Develop	ment Ion Torrent							Dashb	oard	Samples	Runs	Results	Assa
Results / BIORETMET_05_05_22 ▼ / O	PA cfTNA w3.2.0 V / ctTNA_ptCG_t0 V												
ctTNA_ptCG_t0 QC 🗸	Key Findings Variants Plu	igins Reports											
All SNVs/Indels Fusions CN	Vs							Oncomin	ne Variants	; (5.16) Filter Chair 2 of 3,159	n Applied 9 Variants	Edit Filters	
Туре 🔻	Gene	Allele Frequency (%)	Coverage	T	Nuc Change	T	Effective Read Depth	T	Genes (E	xons)	T	Read Co	unts
snp	MET	7.9	1615		c.2942-1G>A		1615						
RNAExonVariant	MET								MET(13) -	• MET(15)		217	

Reporting fusion in LB from cfRNA is quite challenging given its instability

A complete overlap (100%) in RET fusion calling was observed in 3 cases by comparing tissue and blood profile at baseline

NGS tissue report

Materiale inviato:

Perviene inclusione n 21/8051 relativa a biopsia pleurica sede di adenocarcinoma

ESAMI RICHIESTI: analisi dello stato mutazionale dei seguenti geni: ALK, BRAF, EGFR, ERBB2, KRAS, MET, NTRK1,2,3, RET, ROS1

METODICA UTILIZZATA: test NGS (Next Generation Sequencing); piattaforma Ion Torrent Genexus;

pannello Oncomine Precision Assay (OPA) (DNA+RNA)

Cellularità tumorale presente nel campione: 30%

RISULTATO

E' STATA RILEVATA UNA FUSIONE DEL GENE RET: CCDC6 (1)-RET (12)

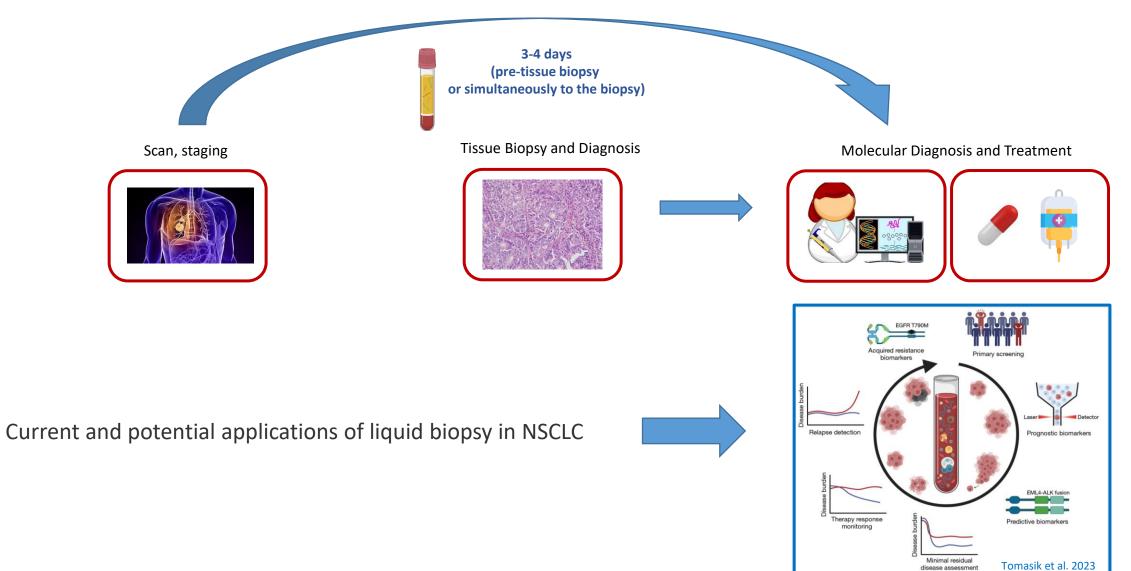
(livello di significatività clinico-terapeutica: 1*; IA**)

FCCDC6 esone 1 - RET esone 12; fusione gain of function; numero di reads 764

- E' stata rilevata inoltre la fusione: CCDC6 (1)-RET (11) (livello 1*; IA**); CCDC6 esone 1 - RET esone 11; fusione gain of function; numero di reads 178

Livelli di significatività clinico terapeutica:

1*/Tier IA** marcatore predittivo di risposta a farmaco approvato in questo tipo di neoplasia


-E' stata rilevata la presenza di una mutazione a carico del gene TP53 : G266V; NM_000546.5 : c.797GGGGG>T; p. (Gly266Val); frequenza allelica della variante: 19%; oncogenica

Key Variants Detected Other Var	iants Detected None D	Not Assayed			
RET CCDC6-RET.C1R11.1	Fusion	RET CCDC6-RET.C1R12.COSF1271.1	Fusion	TP53 COSM10958 AA Change: p.G266V	SNV/Inde

cfTNA

Future outlook

Integrate liquid biopsy earlier into diagnostic pathway

17

disease assessment

Conclusions

✓ High concordance in identifying actionable mutations between tissue and cfTNA

- Gene fusion detection from cfRNA can be achieved through amplicon-based NGS analysis provided there is a well-organized liquid biopsy path
- Liquid biopsy (cfTNA) could be used as complementary to tumor tissue biopsies to identify actionable mutations
- The shorter TAT approach provided by Genexus-OPA suggested the possibility of performing cfTNA genomic profile in advance
- This enables the detection of actionable mutations while waiting for the results of tumor biopsy or when tissue quantity is not sufficient for testing

Acknowledgments

Edoardo Pescarmona, Pathologist Paolo Visca, Pathologist

Francesca Rollo, Biologist Enzo Gallo, Biologist Livia Ronchetti, Biologist Cristiana Ercolani, Biologist

The whole team at Pathology Unit Molecular Diagnostics Laboratory *Regina Elena National Cancer Institute, Rome, Italy*

